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A note on a capillarity model and the nonlinear
Schrödinger equation
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Abstract. A system of two equations governing the irrotational flow of a capillary fluid is
shown, for a particular class of free energy functions, to reduce to a nonlinear Schrödinger
equation.

1. Introduction

In continuum mechanics, the adoption of model constitutive laws for which the governing
equilibrium or dynamic equations reduce to tractable form is well established. In gas
dynamics, this approach goes back at least to the pioneering work by Chaplygin in 1904 on
gas jets [1]. Subsequent extensive developments on the application of model laws in gas
dynamics are catalogued by Dombrovskii [2]. A comprehensive treatment of the subject
based on B̈acklund transformations is due to Loewner [3] and described, in detail, in the
monograph by Rogers and Shadwick [4]. Deep connections between Loewner’s work and
soliton theory have been established by Konopelchenko and Rogers [5, 6] and Schief and
Rogers [7].

Here, we note another link between fluid dynamics and soliton theory involving model
laws, in this case for a capillarity system recently introduced by Antanovskii [8]. It is
shown that, for a particular class of free energy functions, the dynamic equations for this
capillarity system reduce to a nonlinear Schrödinger (NLS) equation. In(1+1) dimensions,
a reduction to the integrable cubic Schrödinger equation is obtained.

2. A class of model laws in capillarity and the NLS equation

Here, we consider the following system governing the flow of an inviscid, isothermal
capillary fluid (Antanovskii [8]):

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂v

∂t
+ v · ∇v = g −∇

[
δ(ρf )

δρ

]
(2)

where ifα = 1
2|∇ρ|2 then

f = f (ρ, α) (3)
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denotes the specific free energy. In the above

δ8

δρ
≡ ∂8

∂ρ
−∇ ·

(
∂8

∂α
∇ρ
)

(4)

designates the variational derivative. The quantity

ζ = δ[ρf ]

δρ
(5)

is the chemical potential of the liquid–vapour system;ρ denotes the density of the fluid,v
its velocity andt the time.

In the case of irrotational flow with conservative external forceg, there exist potentials
φ and5 such that

v = ∇φ g = ∇5.
Hence the governing system (1) and (2) reduces to

∂ρ

∂t
+∇ · (ρ∇φ) = 0 (6)

∂φ

∂t
+ 1

2
|∇φ|2+ δ

δρ
(ρf )−5 = B(t). (7)

It is noted that the arbitraryB(t) in the Bernoulli integral (7) may be absorbed into the
potentialφ, and, accordingly, is henceforth set zero.

On introduction of

q = ρ1/2 eiφ/2 (8)

it is seen that

∂q

∂t
= 1

2

[
ρ−1/2∂ρ

∂t
+ iρ1/2∂φ

∂t

]
eiφ/2 (9)

1q = 1

2

[
ρ−1/21ρ − 1

2
ρ−3/2|∇ρ|2+ iρ1/21φ + iρ−1/2∇ρ · ∇φ − 1

2
ρ1/2|∇φ|2

]
eiφ/2. (10)

Hence on use of the continuity equation (6) and Bernoulli integral (7) we obtain

i
∂q

∂t
+1q = 1

2

[
δ

δρ
(ρf )+ 1ρ

ρ
− 1

2

|∇ρ|2
ρ2
−5

]
q (11)

or, equivalently, if5 = 0, as

i
∂q

∂t
+1q = 1

2

δ

δρ

[
ρf (ρ, α)− α

ρ

]
q. (12)

If attention is restricted to free energy functions of the type

f = 1

2ρ2
|∇ρ|2+H(ρ) (13)

whereH(ρ) is arbitrary, then it is seen that (12) reduces to the nonlinear Schrödinger
equation

i
∂q

∂t
+1q + J (|q|)q = 0 (14)

where

J (|q|) = − 1
2[ρH(ρ)]′ |q| = √ρ. (15)
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In this case, the capillary pressure adopts the form

p ≡ ρ2 δf

δρ
= ρ2H ′(ρ)− ρ1(logρ). (16)

In general, the NLS equation (14) is not integrable. However, in(1+ 1) dimensions, if
J = ν|q|2 then the integrable cubic Schrödinger equation

i
∂q

∂t
+ ∂

2q

∂x2
+ ν|q|2q = 0 (17)

results. Accordingly, exact solutions of (17), such as the multi-kink soliton solutions
generated by Boitiet al [9] via Bäcklund transformations are readily obtained for the
(1+ 1)-dimensional capillarity system with model free energy functions

f = α

ρ2
− µ
ρ
− νρ µ, ν ∈ R. (18)

3. Conclusion

Hydrodynamic interpretation of Schrödinger-type equations has its origin in work as far
back as 1926 by Madelung [10] and has subsequently been the subject of investigation by,
amongst others, Degtyarev and Krylov [11] and Perrie [12]. Here, capillarity is encapsulated
in the hydrodynamic system. It is important to stress that it is only this presence of capillarity
that allows exact reduction to the NLS equation.
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